A few months ago I wrote an article about Zero GC in .NET Core 2.0. This proof of concept was based on a preview version of .NET Core 2.0 in which a possibility to plug in custom garbage collector has been added. Such “standalone GC”, as it was named, required custom CoreCLR compilation because it was not enabled by default. Quite a lot of other tweaks were necessary to make this working – especially including required headers from CoreCLR code was very cumbersome.

However upcoming .NET Core 2.1 contains many improvements in that field so I’ve decided to write follow up post. I’ve also answered one of the questions bothering me for a long time (well, at least started answering…) – how would real usage of Zero GC like in the context of ASP.NET Core application?

.NET Core 2.1 changes

Here is a short summary of most important changes. I’ve updated CoreCLR.Zero repository to reflect them.

  • first of all, as previously mentioned, now standalone GC is pluggable by default so no custom CoreCLR is required. We will be able to plug our custom GC just by setting a single environment variable:
  • as standalone GC matured, documentation in CoreCLR appeared
  • a great improvement is that code between library implementing standalone GC and CoreCLR has been greatly decoupled. Now it is possible to include only a few files directly from CoreCLR code to have things compiled:

    Previously I had to create my own headers with some of the declarations from CoreCLR copy-pasted which was obviously not maintanable and cumbersome.
  • loading path has been refactored slightly. InitializeGarbageCollector inside CoreCLR calls GCHeapUtilities::LoadAndInitialize() with the following code inside:

    Inside LoadAndInitializeGC there is a brand new functionality – verification of GC/EE interface version match. It checks whether version used by standalone GC library (returned by GC_VersionInfo function) matches the runtime version – major version must match and minor version must be equal or higher. Additionaly, GC initialization function has been renamed to GC_Initialize.
  • core logic of my the poor man’s allocator remained the same so please refer to the original article for details

ASP.NET Core 2.1 integration

As this CoreCLR feature has matured, I’ve decided do use standard .NET CLI instead of CoreRun.exe. This allowed me to easily test the question bothering me for a long time – how even the simplest ASP.NET Core application will consume memory without garbage collection? .NET Core 2.1 is still in preview so I’ve just used Latest Daily Build of .NET CLI to create WebApi project:

I’ve modified Controller a little to do something more dynamic that just returning two string literals:

Additionally, I’ve disabled Server GC which is enabled by default. Obviously setting GC mode does not make sense as there is no GC at all, right? However, Server GC crashes runtime because GC JIT_WriteBarrier_SVR64 is being used which requires valid card table address – and there are no card tables either 🙂

Then we simply compile and run, remembering about the environment variable:

Everything should be running fine so… congratulations! We’ve just run ASP.NET Core application on .NET Core with standalone GC plugged in which is doing nothing but allocating.


I’ve created the same WebApi via regular .NET Core 2.0 CLI for reference. Then via SuperBenchmarker I’ve started simple load test: 10 concurrent users making 100 000 requests in total with 10 ms delay between each request.

.NET Core 2.1 with Zero GC:


.NET Core 2.0:


As we can see classic GC from .NET Core was able to process slightly more requests (357.8 requests/second) comparing to version with Zero GC plugged in. It does not surprise me at all because my version uses the most primitive allocation based on calloc. I’m quite surprised that Zero GC is doing so well after all. However, this is not so interesting because I assume that replacing calloc with a simple bump a pointer allocation would improve performance noticeably.

What is interesting is the memory usage over time. As you can see in the chart below, after a minute of such test, the process using Zero GC takes around 1 GB of memory. This is… quite a lot. Not sure yet how to interpret this. Version with regular GC ended with a stable 120 MB size. Both started from fresh run.


This would mean that each REST WebApi requests triggers around 55 kB of allocations. Any comments will be appreciated here…

Update 30.01.2018: After debugging allocations during single ASP.NET requests, most of them comes from RouterMiddleware. This is no surprise as currently this application does almost nothing but routing… I’ve uploaded sample log of such single request which seems to be minimal (others are allocating some buffers from time to time). It consumes around 7 kB of memory.

We can often hear that allocation of objects is “cheap” in .NET. I fully support this sentence because the most important part is its continuation – allocation is cheap but allocating a lot of objects will hit you back as sooner or later garbage collector will kick in and start messing around. Thus, the fewer allocations, the better.

However, I would like to add a few words about “allocation is cheap” itself. This is true to some extent because the typical path of objects allocation is indeed really fast. So-called bump a pointer technique is most often used. It consists of the following simple steps:

  • it uses so-called allocation pointer as an address of a newly created object
  • it increases allocation pointer by the requested size (so next object will be created there

Continue reading


I would like to announce with pleasure the initiative of Three Dot Netos. I am very excited because the preparations have been going on for several months. And here it is finally. I can officially and publicly announce it!

But… what?

We get in the car and start on the road through Poland. 5 cities, day by day. Every evening a different city and other people but the same topics – .NET performance, .NET internals and other advanced .NET themes. Hell of a ride for your brain! There will be no mercy. If you’re bored with sessions on .NET at other conferences, now you should be happy! Of course, this is not meant to be an empty talk. All topics discussed will be practical. But we will not repeat again the same boring “reference types are on the heap and value types are on the stack“. Oh no no! Detailed agenda will be announced in a few weeks. But be sure it will be interesting.

In the first edition, we will speak Polish. But who knows what the future will bring. However, if you know some Polish guys – tell them about us! Spread the word, this will always be helpful for planning further initiatives. Please 🙂

Continue reading

Tune screenshot

I would like to present you a new tool I’ve started to work on recently. I’ve called it The Ultimate .NET Experiment (Tune) as its purpose is to learn .NET internals and performance tuning by experiments with C# code. As it is currently in very early 0.2 version, it can be treated as Proof Of Concept with many, many features still missing. But it is usable enough to have some fun with it already.

The main way of working with this tool is as follows:

  • write a sample, valid C# script which contains at least one class with public method taking a single string parameter. It will be executed by hitting Run button. This script can contain as many additional methods and classes as you wish. Just remember that first public method from the first public class will be executed (with single parameter taken from the input box below the script). You may also choose whether you want to build in Debug or Release mode (note: currently it is only x64 bit compilation).
  • after clicking Run button, the script will be compiled and executed. Additionally, it will be decompiled both to IL (Intermediate Language) and assembly code in the corresponding tab.
  • all the time Tune is running (including time during script execution) a graph with GC data is being drawn. It shows information about generation sizes and GC occurrences (as vertical lines with the number below showing which generation has been triggered).

Continue reading

Trace Compass

.NET Core on Linux is still very fresh in 2017. First production deployments are just beginning to emerge. Consequently, development on this platform is only beginning to show up. There is a lack of knowledge and good practices related to virtually every aspect of the existence of this environment. One of them is monitoring and diagnostic aspect. How can we monitor and analyze the health of our application?

The easiest way of getting tracing data is by using official perfcollect bash script and then using Perfview on Windows to analyze this recorded data. This approach has some drawbacks. The main one is are fairly limited analysis results available in PerfView. The second, less burdensome, is the need for Windows to… analyze Linux data. Recently Sasha Goldstein has created a lot of valuable material on this subject and I invite you to review the list posted at the end of this post.

I would like to present another diagnostic option here. This is using the free Eclipse Trace Compass tool. Continue reading